Distributed Pedestrian Detection Alerts Based on Data Fusion with Accurate Localization

نویسندگان

  • Fernando García
  • Felipe Jiménez
  • José Javier Anaya
  • Jose M. Armingol
  • José Eugenio Naranjo
  • Arturo de la Escalera
چکیده

Among Advanced Driver Assistance Systems (ADAS) pedestrian detection is a common issue due to the vulnerability of pedestrians in the event of accidents. In the present work, a novel approach for pedestrian detection based on data fusion is presented. Data fusion helps to overcome the limitations inherent to each detection system (computer vision and laser scanner) and provides accurate and trustable tracking of any pedestrian movement. The application is complemented by an efficient communication protocol, able to alert vehicles in the surroundings by a fast and reliable communication. The combination of a powerful location, based on a GPS with inertial measurement, and accurate obstacle localization based on data fusion has allowed locating the detected pedestrians with high accuracy. Tests proved the viability of the detection system and the efficiency of the communication, even at long distances. By the use of the alert communication, dangerous situations such as occlusions or misdetections can be avoided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-hop PSO based localization algorithm for wireless sensor networks

A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...

متن کامل

Fusion of Multispectral Data Through Illumination-aware Deep Neural Networks for Pedestrian Detection

Multispectral pedestrian detection has received extensive attention in recent years as a promising solution to facilitate robust human target detection for around-the-clock applications (e.g. security surveillance and autonomous driving). In this paper, we demonstrate illumination information encoded in multispectral images can be utilized to significantly boost performance of pedestrian detect...

متن کامل

Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Localization

State-of-the-art methods treat pedestrian attribute recognition as a multi-label image classification problem. The location information of person attributes is usually eliminated or simply encoded in the rigid splitting of whole body in previous work. In this paper, we formulate the task in a weakly-supervised attribute localization framework. Based on GoogLeNet, firstly, a set of mid-level att...

متن کامل

Pedestrain Monitoring System using Wi-Fi Technology And RSSI Based Localization

This paper presentsa new simple mobile tracking system based on IEEE802.11 wireless signal detection, which can be used for analyzingthe movement of pedestrian traffic. Wi-Fi packets emitted by Wi-Fi enabled smartphones are received at a monitoring station and these packets contain date, time, MAC address, and other information. The packets are received at a number of stations, distributed thro...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013